Genotype networks shed light on evolutionary constraints.

نویسنده

  • Andreas Wagner
چکیده

An evolutionary constraint is a bias or limitation in phenotypic variation that a biological system produces. One can distinguish physicochemical, selective, genetic and developmental causes of such constraints. Here, I discuss these causes in three classes of system that bring forth many phenotypic traits and evolutionary innovations: regulatory circuits, macromolecules and metabolic networks. In these systems, genotypes with the same phenotype form large genotype networks that extend throughout a vast genotype space. Such genotype networks can help unify different causes of evolutionary constraints. They can show that these causes ultimately emerge from the process of development; that is, how phenotypes form from genotypes. Furthermore, they can explain important consequences of constraints, such as punctuated stasis and canalization.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Components of phylogenetic signal in antagonistic and mutualistic networks.

Recent studies have shown a phylogenetic signal in the structure of ecological networks, making the point that evolutionary history is important in explaining network architecture. However, this previous work has focused on either antagonistic (i.e., predator-prey) or mutualistic networks and has used different methodologies. Thus, a comparative assessment of both the frequency and the strength...

متن کامل

The Role of RNA Editing in Dynamic Environments

This paper presents a computational methodology based on Genetic Algorithms with Genotype Editing (GAE) for investigating the role of RNA editing in dynamic environments. This model is based on genotype editing characteristics that are gleaned from RNA editing processes as observed in several organisms. We have previously expanded the traditional Genetic Algorithm (GA) with artificial editing m...

متن کامل

Optimal Self-healing of Smart Distribution Grids Based on Spanning Trees to Improve System Reliability

In this paper, a self-healing approach for smart distribution network is presented based on Graph theory and cut sets. In the proposed Graph theory based approach, the upstream grid and all the existing microgrids are modeled as a common node after fault occurrence. Thereafter, the maneuvering lines which are in the cut sets are selected as the recovery path for alternatives networks by making ...

متن کامل

A Systematic Study of Genetic Algorithms with Genotype Editing

This paper continues our systematic study of an RNAediting computational model of Genetic Algorithms (GA). This model is constructed based on several genetic editing characteristics that are gleaned from the RNA editing system as observed in several organisms. We have expanded the traditional Genetic Algorithm with artificial editing mechanisms as proposed in [11] and [12]. The incorporation of...

متن کامل

A genotype network reveals homoplastic cycles of convergent evolution in influenza A (H3N2) haemagglutinin.

Networks of evolving genotypes can be constructed from the worldwide time-resolved genotyping of pathogens like influenza viruses. Such genotype networks are graphs where neighbouring vertices (viral strains) differ in a single nucleotide or amino acid. A rich trove of network analysis methods can help understand the evolutionary dynamics reflected in the structure of these networks. Here, I an...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Trends in ecology & evolution

دوره 26 11  شماره 

صفحات  -

تاریخ انتشار 2011